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Abstract

We give a direct tensor decomposition for any density matrix into Hermitian
operators. Based upon the decomposition we study when the mixed states are
separable and generalize the separability indicators to multi-partite states and
show that a density operator is separable if and only if the separable indicator is
non-negative. We then derive two bounds for the separable indicator in terms
of the spectrum of the factor operators in the tensor summands.

PACS numbers: 03.67.−a, 03.67.Mn, 03.65.Ud

1. Introduction

In the last decade quantum entanglement has played a remarkable role in many applications and
become one of the key resources in the rapidly expanding fields of quantum information and
quantum computation, especially in quantum teleportation, quantum cryptography, quantum
dense coding and parallel computation [1–3]. A quantum state or density matrix is separable
(or not entangled) if it is a convex sum of tensor product of quantum states. In this case the
separable quantum state can be prepared in several different locations. There are two aspects in
the question regarding quantum entanglement: the first is to judge whether a general quantum
state is entangled or not, and the second is to establish how much entanglement remains
after some noisy quantum process. In the case of pure states, the Bell inequality provides
a useful tool to tell separability from entanglement [4]. In [5–8] the separability problem
was examined and important criteria were proposed from several viewpoints for the far more
difficult case of mixed states including the PPT criterion and the range equality condition.
In terms of measurement of entanglement other methods have been found, e.g. formation
of entanglement [9] and purification of formation [11, 12]. Recently further important and
interesting works [13–15] have also been devoted solely to quantum entanglement and some
criteria were proposed accordingly, in particular, [16] gives an operational and geometric
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approach to pairwise entanglement of two and three-dimensional composite quantum systems.
Despite these important developments the question of separability still remains unsolved and
is notoriously famous for its difficulty.

Among the approaches to quantum separability it is important to have an operational
method to decompose the quantum states as a tensor product. Such an idea was first
studied in [17], where some necessary constraints were found to ensure an optimal separable
approximation to a given density matrix, and then a numerical method is proposed to locate
the optimal separable state for two-partite mixed states. In [18] a new algebraic mechanism
was introduced to study the separability question for two partite mixed states. The idea was
first to decompose the mixed density matrix as a summation of tensor products of Hermitian
operators, and then we rearrange the sum to get the indicator. It was proved that the density
matrix is separable if and only if the indicator is non-negative. Thus the indicator provides a
new measurement for the separability.

In this paper we will generalize this method to multi-partite density operators. We will
give a new operational method to decompose the density matrix as a summation of tensor
products of Hermitian operators. Our new method at the simplest case is the fundamental fact
that any 4 × 4 Hermitian operator is a span of composite Pauli spin matrices σi ⊗ σj , where

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

Once the decomposition into tensor products is known, the idea of the separability
indicator [18] is generalized into multi-partite states and we show that the mixed states
are separable if and only if the separability indicator is non-negative. In general it is hard to
compute the separability indicator. For this purpose we provide several bounds, and hope that
they will help in the determination of the separability.

2. Basic notions

Let H1 (resp. H2) be an m (resp. n)-dimensional complex Hilbert space, with |i〉, i =
1, 2 . . . , m (resp. |j 〉, j = 1, 2 . . . , n) as an orthonormal basis. A bipartite mixed state is said
to be separable if the density matrix can be written as

ρ =
∑

i

piρ
1
i ⊗ ρ2

i , (1)

where 0 < pi � 1,
∑

i pi = 1, ρ1
i and ρ2

i are density matrices on H1 and H2 respectively. It
is a challenging problem to find such a decomposition or to prove that it does not exist for a
generic mixed state [5–8].

We first introduce some notations. For an m × m block matrix Z with each block Zij of
size n × n, i, j = 1, 2 . . . , m. The realigned matrix Z̃ is defined by

Z̃ = [vec(Z11), . . . , vec(Zm1), . . . , vec(Z1m), . . . , vec(Zmm)]t , (2)

where for any m × n matrix T with entries tij , vec(T ) is defined to be

vec(T ) = [t11, . . . , tm1, t12, . . . , t1n, . . . , tmn]t .

Let A = AR +
√−1AI be a complex Hermitian matrix, where AR and AI are real and

imaginary parts of A. Let σ be the canonical map from A to a real matrix:

σ : A �−→
(

AR AI

−AI AR

)
, (3)

where AR and AI are the real and imaginary parts of A respectively.
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Let Qs be an m2 × m(m−1)

2 matrix. If we arrange the row indices of Qs as

{11, 21, 31, . . . , m1, 12, 22, 32, . . . , m2, . . . , mm},
then all the entries of Qs are zero except those at 21 and 12 (resp. 31 and 13, . . . ) which are 1
and −1 respectively in the first (resp. second, . . . ) column. In other words,

Qs = [{e21,−e12}; {e31,−e13}; . . . ; {em,m−1,−em−1,m}],
where {e21,−e12} is first column of Qs , with 1 and −1 at the 21 and 12 rows respectively;
while {e31,−e13} is second column of Qs , with 1 and −1 at the 31 and 13 rows respectively;
and so on.

Let Qa be an m2 × m(m+1)

2 matrix such that

Qa = [{e11}; {e21, e12}; {e31, e13}, . . .; {e22}; {e32, e23},
{e42, e24}; . . . ; {em,m−1, em−1,m}, {emm}],

where {e11} is the column vector with 1 at the row ii and zero elsewhere, and {e1j , e1j } is the
column vector with 1 at the ij th and jith rows and zero elsewhere. Q1 can be expressed as

Q1 =
(

Qs 0 0 Qa

0 Qa Qs 0

)
,

where Qs and Qa are obtained by normalizing each column of Qs and Qa .
By replacing the dimension m with n, we have Q2.
As an example we have for m = 2

Qs =

⎛
⎜⎜⎝

0
1

−1
0

⎞
⎟⎟⎠ , Qa =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟⎟⎠ .

3. The tensor product decompositions of Hermitian matrices

Let A be a Hermitian matrix on Hilbert space H1 ⊗H2. In [18] we gave an operational method
to decompose A as a tensor product of Hermitian matrices on H1 and H2. We will give another
method to decompose A and then generalize to the case of multi-tensor products.

Let us recall the decomposition method in [18]. We express the matrix A in terms of real
and complex parts: A = AR + iAI and realign both AR and AI into ÃR and ÃI respectively
as in equation (2). Then we write

Qt
1

(
ÃR ÃI

−ÃI ÃR

)
Q2 =

(
Â11 Â12

Â21 Â22

)
. (4)

Proposition 1. Let A be an mn × mn Hermitian matrix as rewritten in equation (4). Suppose
the singular value decomposition of Â22 is Â22 = ∑r

i=1

√
λiuiv

t
i , where r is the rank and

λi (i = 1, 2, . . . r) are the non-zero eigenvalues of Â†
22Â22, and ui (resp. vi) are the eigenvectors

of the matrix Â22Â
†
22 (resp. Â

†
22Â22). Set B̂i = √

λiui, Či = −vi. Then we can decompose A

as a tensor product

A =
r∑

i=1

Bi ⊗ Ci,

3



J. Phys. A: Math. Theor. 41 (2008) 395302 X Huang and N Jing

where the m × m Hermitian matrices Bi = bi +
√−1Bi and the n × n Hermitian matrices

Ci = ci +
√−1Ci are given by(

vec(bi)

−vec(Bi )

)
= Q1

(
0

−B̂i

)
,

(
vec(ci)

vec(Ci )

)
= Q2

(
0
Či

)
. (5)

The above result gives a constructive or operative method to decompose A as a tensor
product. The existence of tensor decomposition has a simpler explanation. In fact, we know
that the set of n × n Hermitian matrices is a real vector space of dimension n2, thus the
dimension of Hermitian matrices of size mn × mn is exactly equal to the product of the
dimension of size m × m and that of size m × m, hence the subspace of tensor product of
Hermitian matrices of size n×n and that of size m×m must equal to the space of all Hermitian
matrices of size mn × mn, which guarantees the existence.

We observe that in general the space of real symmetric (antisymmetric) matrices cannot
be decomposed into a tensor product of symmetric (antisymmetric) matrices. In fact, the
difference between dimensions of the space of mn × mn symmetric matrices and that of the
tensor product of symmetric matrices of size m × m and size n × n is(

mn + 1
2

)
−

(
m + 1

2

) (
n + 1

2

)
=

(
m

2

) (
n

2

)
.

Similarly the difference between the dimensions of antisymmetric operators over C
m × C

n

and that of the tensor product of antisymmetric operators is(
mn − 1

2

)
−

(
m − 1

2

) (
n − 1

2

)
=

(
m + 1

2

) (
n + 1

2

)
− 1.

We can use induction to generalize proposition 1 to multi-partite case.

Theorem 1. Let A be an Hermitian matrix on space H1 ⊗ H2 ⊗ H3 ⊗ . . . ⊗ Hn. A has tensor
production decomposition like A = ∑r

i=1 B1
i ⊗ B2

i ⊗ . . . ⊗ Bn
i , where B1

i , B
2
i , . . . , B

n
i are

Hermitian matrices on H1,H2, . . . , Hn respectively.

We now present a practical method to decompose Hermitian matrices into a tensor product
of Hermitian matrices, thus giving a new constructive proof for theorem 1. Let En

ij be the unit
square matrices of size n × n. If it is clear form the context, we will omit the superscript. To
decompose the unit matrix Emn

ij , we write its indices i, j uniquely as follows:

i = (k − 1)n + i ′, j = (l − 1)n + j ′, (6)

where 1 � k, l � m and 1 � i ′, j ′ � n. Then we have

Emn
ij = Em

kl ⊗ En
i ′j ′ . (7)

Equivalently we can picture the above decomposition as follows. We first view Emn
ij as

an m × m block matrix with each entry as an n × n matrix. The resulted block matrix is still
a unit-like matrix where all entries are zero except (k, l)-entry, which is an n × n unity matrix
itself, say Ei ′j ′ . Then we immediately have Emn

ij = Em
kl ⊗ En

i ′j ′ .

4
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Example 1. Let (1 + 7b)−1ρb be the density operator on C
2 ⊗ C

4 as follows.

ρb =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b 0 0 0 0 b 0 0

0 b 0 0 0 0 b 0

0 0 b 0 0 0 0 b

0 0 0 b 0 0 0 0

0 0 0 0 1+b
2 0 0

√
1−b2

2

b 0 0 0 0 b 0 0

0 b 0 0 0 0 b 0

0 0 b 0
√

1−b2

2 0 0 1+b
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can decompose ρb by the above scheme.

ρb = b
(
E8

11 + E8
16 + E8

22 + E8
27 + E8

33 + E8
38 + E8

44 + E8
61 + E8

66 + E8
72 + E8

77 + E8
83

)
+

1 + b

2

(
E8

55 + E8
88

)
+

√
1 − b2

2

(
E8

58 + E8
85

)
= b

(
E2

11 ⊗ E4
11 + E2

12 ⊗ E4
12 + E2

11 ⊗ E4
22 + E2

12 ⊗ E4
23 + E2

11 ⊗ E4
33 + E2

12 ⊗ E4
34

+ E2
11 ⊗ E4

44 + E2
21 ⊗ E4

21 + E2
22 ⊗ E4

22 + E2
21 ⊗ E4

32 + E2
22 ⊗ E4

33 + E2
21 ⊗ E4

43

)
+

1 + b

2

(
E2

22 ⊗ E4
11 + E2

22 ⊗ E4
44

)
+

√
1 − b2

2

(
E2

22 ⊗ E4
14 + E2

22 ⊗ E4
41

)
.

For a different decomposition using the singular value decomposition, the reader is referred
to [18].

This decomposition method can be generalized to Hermitian operators. Let A be a
Hermitian matrix, then one can decompose A into a sum of real and imaginary parts:
A = B +

√−1C, where B (or C) is a symmetric (or antisymmetric) matrix. Let {Eij + Eji}
be the basis for the symmetric matrices, and {Eij − Eji} be the basis for the antisymmetric
matrices. It is enough to decompose the basis elements as tensor products of Hermitian
matrices. Roughly speaking, one writes each basis element Eij ± Eji of size mn × mn as a
block matrix, then transform it into a tensor product according to the position where the 1 or
−1 appears. The main point is that we have to consider all Hermitian matrices to factor the
basis elements (cf the remark after proposition 1).

Specifically, by modulo n we write the indices i, j uniquely as in equation (6):
i ≡ i ′(mod n), j ≡ j ′(mod n) and k = [(i − 1)/n] + 1, l = [(j − 1)/n] + 1. Here the
representatives for Zn are taken to be {1, 2, . . . , n}. Then we have the decomposition

Emn
ij + Emn

ji = 1
2

[(
Em

kl + Em
lk

) ⊗ (
En

i ′j ′ + En
j ′i ′

) − √−1
(
Em

kl − Em
lk

) ⊗ √−1
(
En

i ′j ′ − En
j ′i ′

)]
,

(8)

√−1
(
Emn

ij − Emn
ji

) = 1
2

[(
Em

kl + Em
lk

) ⊗ √−1
(
En

i ′j ′ − En
j ′i ′

)
+

√−1
(
Em

kl − Em
lk

) ⊗ (
En

i ′j ′ + En
j ′i ′

)]
. (9)

Equivalently we can picture the above decomposition as follows. We first view Emn
ij ±

Emn
ji as an m × m block matrix (Pst ), where Pst = 0 except (s, t) = (k, l) or (l, k), and

Pkl = P T
lk = Ei ′j ′ . Then we have Emn

ij + Emn
ji = Em

kl ⊗ En
i ′j ′ + Em

lk ⊗ En
j ′i ′ . A simple

computation will show that it is also given by equation (8).

5
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Example 2. For f ∈ [0, 1] consider the Werner state [19]

ρ =

⎛
⎜⎜⎜⎝

1−f

3
1+2f

6
1−4f

6
1−4f

6
1+2f

6
1−f

3

⎞
⎟⎟⎟⎠ . (10)

Then

ρ = 1 − f

3
E4

11 +
1 + 2f

6

(
E4

22 + E4
33

)
+

1 − 4f

6

(
E4

23 + E4
32

)
+

1 − f

3
E4

44

= 1 − f

3
E11 ⊗ E11 +

1 + 2f

6
(E11 ⊗ E22 + E22 ⊗ E11)

+
1 − 4f

12
[(E12 + E21) ⊗ (E21 + E12)− i(E12 − E21) ⊗ i(E21 − E12)] +

1 − f

3
E22 ⊗ E22.

Example 3. For non-negative a, b, c consider the following positive semi-definite matrix:

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1
0 a 0 0 0 0 0 0
0 0 b 0 0 0 0 0
0 0 0 c 0 0 0 0
0 0 0 0 1

a
0 0 0

0 0 0 0 0 1
b

0 0
0 0 0 0 0 0 1

c
0

1 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Then we have

ρ = E11 ⊗ E11 ⊗ E11 + E22 ⊗ E22 ⊗ E22

+
1

4
S12 ⊗ (S12 ⊗ S12 − iA12 ⊗ iA12) − 1

4
iA12 ⊗ (S12 ⊗ iA12 − iA12 ⊗ S12)

+ aE11 ⊗ E11 ⊗ E22 + bE11 ⊗ E22 ⊗ E11 + cE11 ⊗ E22 ⊗ E22

+
1

a
E22 ⊗ E11 ⊗ E11 +

1

b
E22 ⊗ E11 ⊗ E22 +

1

c
E22 ⊗ E22 ⊗ E11,

where Sij = Eij + Eji and Aij = Eij − Eji .

4. Separability of multi-partite states

As we note in the previous section that any Hermitian operator A on a tensor product
space can be decomposed into a sum of tensor products of Hermitian operators: A =∑r

i=1 B1
i ⊗ B2

i ⊗ · · · ⊗ Bn
i . However the factors B

j

i are generally not density matrices
on Hj as they may not be positive operators. To answer the question of separability of A one
needs to study when each factor is non-negative.

Let m(A) and M(A) denote the smallest and the largest eigenvalues of a Hermitian matrix
A. We can transform the decomposition into another one so that the smallest eigenvalues are
non-negative as follows:

6
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A =
r∑

i=1

B1
i ⊗ B2

i ⊗ · · · ⊗ Bn
i

=
r∑

i=1

(
B1

i − m
(
B1

i

)
Id1 + m

(
B1

i

)
Id1

) ⊗ · · · ⊗ (
Bn

i − m
(
Bn

i

)
Idn + m

(
Bn

i

)
Idn

)

=
t∑

i=1

B ′1
i ⊗ B ′2

i ⊗ · · · ⊗ B ′n
i + q(A) Id1 ⊗ Id2 ⊗ · · · ⊗ Idn, (12)

where B
′j
i are positive semi-definite Hermitian matrices on Hj , and each summand has at least

one m
(
B

′j
k

) = 0 but not all (i.e. at least one factor is the identity Idl on Hl).
Note that q(A) depends on the decomposition. We define the separability indicator of

A, S(A) = max(q(A)) to be the maximum value of q(A) among all possible decompositions
such as (12). The following result is quoted from [18].

Proposition 2. Let A = ∑r
i Bi ⊗ Ci be a density matrix on space H1 ⊗ H2. Then A is

separable iff the separability indicator S(A) � 0. Moreover S(A) satisfies the following
relation S(A) � m(A).

Theorem 2. Let A = ∑r
i=1 Bi ⊗ Ci be a Hermitian operator on the space H1 ⊗ H2, then

q(A) is given by

q(A) =
∑

m(Bi)�0,m(Ci)�0

m(Bi)m(Ci) +
∑

m(Bi)<0

m(Bi)M(Ci)

+
∑

m(Ci)<0

M(Bi)m(Ci) −
∑

m(Bi)<0,m(Ci)<0

m(Bi)m(Ci), (13)

and bounded by

q(A) � M(A) −
r∑

i=1

[(M(Bi) − m(Bi))(M(Ci) − m(Ci)) + M(m(Ci)Bi)

−m(m(Ci)Bi) + M(m(Bi)Ci) − m(m(Bi)Ci)]. (14)

Proof. For any Hermitian matrix P we define the operation P ′ by shifting with the minimum
eigenvalue: P ′ = P − m(P )I . We can rewrite equation (12)

A =
r∑

i=1

B ′
i ⊗ C ′

i + (m(Ci)B
′
i − m((m(Ci)B

′
i )Im) ⊗ In

+ Im ⊗ (m(Bi)C
′
i − m(m(Bi)C

′
i )In) + q(A)Im ⊗ In,

where

q(A) =
∑

i

(m(m(Ci)B
′
i ) + m(m(Bi)C

′
i ) + m(Bi)m(Ci)).

We observe that for any real s,

m(sP ) = s + |s|
2

m(P ) +
s − |s|

2
M(P), M(sP ) = s + |s|

2
M(P) +

s − |s|
2

m(P ). (15)

7
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It then follows that

q(A) =
∑

i

(m(m(Ci)B
′
i ) + m(m(Bi)C

′
i ) + m(Bi)m(Ci))

=
∑

m(Bi)�0,m(Ci)�0

m(Bi)m(Ci)

+
∑

m(Bi)<0,m(Ci)�0

m(Bi)M(Ci) +
∑

m(Bi)�0,m(Ci)<0

M(Bi)m(Ci)

+
∑

m(Bi)<0,m(Ci)<0

(m(Ci)M(Bi) + m(Bi)M(Ci) − m(Bi)m(Ci))

=
∑

m(Bi)�0,m(Ci)�0

m(Bi)m(Ci) +
∑

m(Bi)<0

m(Bi)M(Ci)

+
∑

m(Ci)<0

M(Bi)m(Ci) −
∑

m(Bi)<0,m(Ci)<0

m(Bi)m(Ci).

Now we note that for any matrix P and any real number r,M(P −rI ) = M(P)−r,m(P −
rI ) = m(P ) − r , from which it follows that

M(B ′
i ) = M(Bi − m(Bi)Im) = M(Bi) − m(Bi),

(16)
M(m(Ci)B

′
i − m(m(Ci)B

′
i )Im) = M(m(Ci)Bi) − m(m(Ci)Bi).

On the other hand it is well known that M(A + B) � M(A) + M(B) (see [20]). Thus
taking the maximum eigenvalues, we get

q(A) � M(A) −
r∑

i=1

[(M(Bi) − m(Bi))(M(Ci) − m(Ci)) + M(m(Ci)Bi)

−m(m(Ci)Bi) + M(m(Bi)Ci) − m(m(Bi)Ci)],

which completes the proof. �

In the last part of the proof if we take minimum eigenvalues we will get the known
inequality m(A) � q(A) (using m(A + B) � m(A) + m(B)).

We remark that the above lower bound is different from that in [18]. To better understand
our lower bounds, we consider the special case when all factors are non-negative matrices,
then m(m(Bi)Ci) = m(Bi)m(Ci) etc. Then it follows that

q(A) � M(A) −
r∑

i=1

[M(Bi)M(Ci) − m(Bi)m(Ci)]. (17)

While the other extreme case is when all factors are negative, then

q(A) � M(A) −
r∑

i=1

[(M(Bi) − 2m(Bi))(M(Ci) − 2m(Ci)) − m(Bi)m(Ci)].

When the factors Bi or Ci are not all non-negative, we have

q(A) � M(A) −
∑

m(Bi)�0,m(Ci)�0

[M(Bi)M(Ci) − m(Bi)m(Ci)]

−
∑

m(Bi)<0,m(Ci)�0

[(M(Bi) − 2m(Bi))M(Ci) + m(Bi)m(Ci)]

8
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−
∑

m(Bi)�0,m(Ci)<0

[M(Bi)(M(Ci) − 2m(Ci)) + m(Bi)m(Ci)]

−
∑

m(Bi)<0,m(Ci)<0

[(M(Bi) − 2m(Bi))(M(Ci) − 2m(Ci)) − m(Bi)m(Ci)].

(18)

The above result can be generalized to multi-partite states.

Theorem 3. Let A = ∑r
i Bi ⊗ Ci ⊗ Di be a density matrix on space H1 ⊗ H2 ⊗ H3. Then A

is separable if and only if the separability indicator S(A) � 0. Moreover S(A) satisfies the
following relations:

S(A) � m(A). (19)

q(A) � M(A) −
r∑

i=1

[(M(Bi) − m(Bi))(M(Ci) − m(Ci))(M(Di) − m(Di))

+ M(m(Bi)m(Di)Ci) − m(m(Bi)m(Di)Ci) + M(m(Ci)m(Di)Bi)

− m(m(Ci)m(Di)Bi) + M(m(Bi)m(Ci)Di) − m(m(Bi)m(Ci)Di)

+ M(m(m(Bi)Ci)Di − m(Bi)m(Ci)Di) − m(m(m(Bi)Ci)Di − m(Bi)m(Ci)Di)

+ M(m(m(Ci)Bi)Di − m(Ci)m(Bi)Di) − m(m(m(Ci)Bi)Di − m(Ci)m(Bi)Di)

+ M(m(m(Di)Bi)Ci − m(Di)m(Bi)Ci) − m(m(m(Di)Bi)Ci − m(Di)m(Bi)Ci)

+ (M(m(Di)Bi) − m(m(Di)Bi))(M(Ci) − m(Ci))

+ (M(m(Ci)Bi) − m(m(Ci)Bi))(M(Di) − m(Di))

+ (M(m(Bi)Ci) − m(m(Bi)Ci))(M(Di) − m(Di))]. (20)

The idea of the proof will be similar to that of theorem 2 and is included in the appendix. More
generally we can use the same idea to give similar results for multi-partite cases.

Theorem 4. Let A be a k-partite mixed state on space H1 ⊗ H2 ⊗ · · · ⊗ Hk , then A has a
tensor decomposition into Hermitian operators in the form A = ∑r

i=1 B1
i ⊗ B2

i ⊗ · · · ⊗ Bk
i

and is separable if and only if the separability indicator S(A) � 0. Moreover S(A) satisfies
the following relation:

S(A) � m(A). (21)

When all factors are non-negative, we have

q(A) =
r∑
i

m
(
B1

i

)
m

(
B2

i

) · · · m(
Bk

i

)

� M(A) −
r∑

i=1

[
M

(
B1

i

)
M

(
B2

i

) · · · M(
Bk

i

) − m
(
B1

i

)
m

(
B2

i

) · · · m(
Bk

i

)]
. (22)

5. Conclusion

We have developed a criterion to judge whether a multi-partite density operator is separable.
Our idea is first to decompose the density operator into a sum of tensor product of Hermitian
operators. We give a new and practical way to decompose any Hermitian operator into tensor
product of Hermitian operators in multi-partite cases. Unlike the numerical method [17] and

9
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the method of singular value decomposition [18] our new method is completely elementary and
algebraic. Using the decomposition we can rewrite it into a tensor product of positive operators
plus a scalar operator, which is called the separability indicator. The separability indicator
provides a new mechanism to measure the quantum entanglement of the density operator.
We derive some bound to estimate the scalar or separability indicator. Our inequalities are
expressed in terms of eigenvalues of the summands, and in some case they are sufficient to tell
if the separability indicator is non-negative, thus shows that the density operator is separable.
As our method relies on how the operator is decomposed, it is usually difficult to compute the
separability indicator exactly. We hope our estimates will shed more light on the separability
problem.
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Appendix

Proof of theorem 3. The idea of the proof is similar to that of theorem 2. Recall the meaning
of operation P ′ = P − m(P )I , and we have

A =
r∑

i=1

Bi ⊗ Ci ⊗ Di =
r∑

i=1

B ′
i ⊗ C ′

i ⊗ D′
i +

r∑
i=1

(m(Di)B
′
i − m(m(Di)B

′
i )Im) ⊗ C ′

i ⊗ Ik

+
r∑

i=1

Im ⊗ (m(m(Di)B
′
i )C

′
i − m(m(m(Di)B

′
i )C

′
i )In) ⊗ Ik

+
r∑

i=1

Im ⊗ [m(Bi)m(Di)C
′
i − m(m(Bi)m(Di)C

′
i )In] ⊗ Ik

+
r∑

i=1

Im ⊗ (m(Bi)C
′
i − m(m(Bi)C

′
i )In) ⊗ D′

i

+
r∑

i=1

(m(Ci)B
′
i − m(m(Ci)B

′
i )Im) ⊗ In ⊗ D′

i

+
r∑

i=1

Im ⊗ In ⊗ (m(m(Bi)C
′
i )D

′
i − m(m(m(Bi)C

′
i )D

′
i )Ik)

+
r∑

i=1

[m(Ci)m(Di)B
′
i − m(m(Ci)m(Di)B

′
i )Im] ⊗ In ⊗ Ik

+
r∑

i=1

Im ⊗ In ⊗ (m(m(Ci)B
′
i )D

′
i − m(m(m(Ci)B

′
i )D

′
i )Ik)

+
r∑

i=1

Im ⊗ In ⊗ [m(Bi)m(Ci)D
′
i − m(m(Bi)m(Ci)D

′
i )Ik]

+ q(A)Im ⊗ In ⊗ Ik, (A.1)

10
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where

q(A) =
r∑

i=1

m(m(m(Di)B
′
i )C

′
i ) +

r∑
i=1

m(m(m(Bi)C
′
i )D

′
i ) +

r∑
i=1

m(m(m(Ci)B
′
i )D

′
i )

+
r∑

i=1

m(m(Ci)m(Di)B
′
i ) +

r∑
i=1

m(m(Bi)m(Di)C
′
i ) +

r∑
i=1

m(m(Bi)m(Ci)D
′
i )

+
r∑

i=1

m(Bi)m(Ci)m(Di)

=
r∑

i=1

m(m(m(Di)Bi)Ci − m(Di)m(Bi)Ci)

+
r∑

i=1

m(m(m(Bi)Ci)Di − m(Bi)m(Ci)Di)

+
r∑

i=1

m(m(m(Ci)Bi)Di − m(Bi)m(Ci)Di) −
r∑

i=1

m(m(Di)Bi)m(Ci)

−
r∑

i=1

m(m(Bi)Ci)m(Di) −
r∑

i=1

m(m(Ci)Bi)m(Di) +
r∑

i=1

m(Bi)m(Ci)m(Di),

(A.2)

where we have used similar identities like equation (16). Now we would like to consider
eight possible signs of m(Bi),m(Ci),m(Di), and we use +,−, + to denote the subset
{i|m(Bi) � 0,m(Ci) < 0,m(Di) � 0} etc. to simplify the notation. By equation (15) it
follows that
q(A) =

∑
+,+,+

m(Bi)m(Ci)m(Di)

+
∑
−,+,+

m(Bi)[M(Ci)M(Di) − M(Ci)m(Di) − m(Ci)M(Di) − m(Ci)m(Di)]

+
∑

+,−,+

m(Ci)[M(Bi)M(Di) − m(Bi)M(Di) − M(Bi)m(Di) − m(Bi)m(Di)]

+
∑

+,+,−
m(Di)[M(Bi)M(Ci) − m(Bi)M(Ci) − M(Bi)m(Ci) − m(Bi)m(Ci)]

+
∑

−,−,+

[m(Bi)(M(Ci)M(Di) − M(Ci)m(Di) − m(Ci)M(Di))

+ m(Ci)(M(Bi)M(Di) − m(Bi)M(Di) − M(Bi)m(Di))]

+
∑

−,+,−
[m(Bi)(M(Ci)M(Di) − M(Ci)m(Di) − m(Ci)M(Di))

+ m(Di)(M(Bi)M(Ci) − m(Bi)M(Ci) − M(Bi)m(Ci))]

+
∑

+,−,−
[m(Ci)(M(Bi)M(Di) − m(Bi)M(Di) − M(Bi)m(Di))

+ m(Di)(M(Bi)M(Ci) − m(Bi)M(Ci) − M(Bi)m(Ci))]

+
∑

−,−,−
(m(Di)M(Ci)M(Bi) + m(Bi)M(Ci)M(Di) + m(Ci)M(Di)M(Bi)

− 2m(Bi)m(Ci)M(Di) − 2m(Bi)m(Di)M(Ci) − 2m(Ci)m(Di)M(Bi)

+ m(Bi)m(Ci)m(Di)).

11
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The above expression leads to an easy proof of the criterion: if A is separable, then all
the factors are non-negative and S(A) � q(A) = ∑

i m(Bi)m(Ci)m(Di) � 0. The converse
is immediate.

If we take minimum eigenvalues to the decomposition (12), we will get

m(A) �
∑

i

m
(
B ′1

i

)
m

(
B ′2

i

) · · ·m(
B ′n

i

)
+ q(A) = q(A). (A.3)

Next using similar identities as equation (16) we get identities like

M(m(Di)B
′
i − m(m(Di)B

′
i )Im)) = M(m(Di)Bi) − m(m(Di)Bi),

M(m(m(Di)B
′
i )C

′
i − m(m(m(Di)B

′
i )C

′
i )In) = M(m(m(Di)Bi)Ci − m(Di)m(Bi)Ci)

−m(m(m(Di)Bi)Ci − m(Di)m(Bi)Ci).

Thus we have

M(A) �
r∑

i=1

[(M(Bi) − m(Bi))(M(Ci) − m(Ci))(M(Di) − m(Di))

+ M(m(Bi)m(Di)Ci) − m(m(Bi)m(Di)Ci) + M(m(Ci)m(Di)Bi)

− m(m(Ci)m(Di)Bi) + M(m(Bi)m(Ci)Di) − m(m(Bi)m(Ci)Di)

+ M(m(m(Bi)Ci)Di − m(Bi)m(Ci)Di) − m(m(m(Bi)Ci)Di − m(Bi)m(Ci)Di)

+ M(m(m(Ci)Bi)Di − m(Ci)m(Bi)Di) − m(m(m(Ci)Bi)Di − m(Ci)m(Bi)Di)

+ M(m(m(Di)Bi)Ci − m(Di)m(Bi)Ci) − m(m(m(Di)Bi)Ci − m(Di)m(Bi)Ci)

+ (M(m(Di)Bi) − m(m(Di)Bi))(M(Ci) − m(Ci))

+ (M(m(Ci)Bi) − m(m(Ci)Bi))(M(Di) − m(Di))

+ (M(m(Bi)Ci) − m(m(Bi)Ci))(M(Di) − m(Di))] + q(A), (A.4)

which completes the proof of theorem 3. �

We remark that when all factors are non-negative matrices, then it follows that

q(A) � M(A) −
r∑

i=1

[M(Bi)M(Ci)M(Di) − m(Bi)m(Ci)m(Di)]. (A.5)

While the other extreme case is when all factors are negative, then

q(A) � M(A) −
r∑

i=1

[(M(Bi) − 3m(Bi))(M(Ci)

− 3m(Ci))(M(Di) − 3m(Di)) − m(Bi)m(Ci)m(Di)].

Proof of theorem 4. The proof is by an easy induction as those of theorems 2 and 3. Some
details are already offered in equations (A.3) and (A.4). �
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